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Società Italiana di Fisica
Springer-Verlag 2001

On the proximity relation between two surface-melted clusters
involved in inter-cluster mass transfer

F. Despa and R.S. Berrya

Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA

Received 4 December 2000

Abstract. We explore the way free particles produced by dissociating “particle-hole pairs” on a surface-
melted cluster can be transferred to a second, nearby surface-melted cluster. This mass transport is based
on an inter-cluster direct transfer mechanism of the particles. We found that in this particular case one
cluster may grow at the expense of another, obeying a temporal power law with the exponent 1/2 for the
average radius (R ∼ t1/2). The change from the expected universal power law (R ∼ t1/3) is a consequence
of the proximity relation between these two clusters which lead to enhance the effective transport rates.

PACS. 36.40.-c Atomic and molecular clusters – 81.10.-h Methods of crystal growth; physics of crystal
growth

It is widely agreed that, under certain conditions, clus-
ters may exhibit more than two phaselike forms coexist-
ing in dynamic equilibrium [1–5]. For example, Ar55 is
expected to show, depending on the temperature range,
coexistence of solidlike, homogeneously melted forms and
surface-melted either in an ensemble at any instant or in
the time history of a single cluster [4,5]. It is also equally
possible, e.g., for the solid form to be in equilibrium with
only the surface-melted form and for the surface-melted
form to coexist at higher temperatures with the liquid.
There may or may not be a temperature range in which
the surface-melted form is the only stable species.

The surface-melting phenomenon is usually exhibited
in bulk matter and in large clusters (with about 50 or more
particles, usually) at temperatures or energies a little be-
low the temperatures or energies of homogeneous melting.
This process involves local minima on the potential en-
ergy surface of the system corresponding to one or a few
of the particles from the surface layer moving into local
sites above the surface. The promoted particles are rather
free and float on the cluster surface while all the other
particles in the surface layer undergo large-amplitude, an-
harmonic oscillations. The numerical experiments indicate
that the surface is liquidlike and all the particles of the sur-
face, including the floaters, do permute among themselves
without involving inner layers of the cluster.

The statistical mechanical underpinning of these find-
ings allow for one other kind of behavior yet to be ob-
served. This would be a dynamical process within which
free particles produced by dissociating “particle-hole
pairs” on a surface-melted cluster are allowed to recom-
bine with available vacancies on a second, nearby surface-
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melted cluster. The inter-cluster direct mass transfer aris-
ing in this way involves pairs of surface-melted clusters in
a dense cluster ensemble. The occurrence of this process
is limited by the energetic need to drive the particle flow
and by an obvious requirement on the nearest-neighbor
distance. We assume the surface-melted clusters are close
to each other such that the direct transfer of the particles
makes sense. The escape energy for the itinerant particle
is achieved by thermal excitation and possible interaction
with the surface vacancies on the neighbor cluster. The
probability of transfer is high if the solid angle in the di-
rection of jump is large. Therefore the net flow of parti-
cles proceeds from the small cluster, with large curvature,
to the large cluster in the pair, which has smaller curva-
ture. Note that, an increase of the nearest-neighbor dis-
tance between surface-melted clusters over a critical value
may lead to change the transport mechanism and sets up
crossover phenomena.

The investigation of the direct mass transfer between
neighboring surface-melted clusters is of both theoretical
and experimental interest. First of all, this is a useful way
to increase our understanding of phase separation, coars-
ening [6] and crossover phenomena [7–10]. The process
can also have some relevance in describing kinetic trans-
formations of the cluster-assembled materials. Second, the
direct transfer mechanism of particles between surface-
melted clusters offers the prototype of grain growth which
deviates from the expected universal power law (S ∼ t2/3)
of the classical Ostwald ripening theory [6]. Generalization
for solid clusters is straightforward.

Making reference only to the cluster-pair problem ap-
pears as a strong limitation in the broad context as
declared above. Usually, more than two individuals in
the entire cluster ensemble may act in this process.
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We believe that, for a dense cluster distribution, the chief
particle transfer occurs, anyway, between nearest neigh-
boring clusters, along the shortest separation distance
where the particle concentration gradient is greatest pos-
sible.

It is the purpose of this work to explore the dynamics
of such a process. The modelling starts by assuming that
the separation distance between the surface-melted clus-
ters involved in this process, say ξ, is of order of magnitude
of the characteristic diffusion length l (ξ ' l). In this con-
text, the particles released from one cluster may reach the
second, nearby cluster by performing an inter-cluster di-
rect jump. Next, we assume that the surface-melting pro-
cess produces some number of “particle-hole pairs”at the
surface of each cluster. The number M of “particle-hole
pairs” is directly proportional to the number of atoms on
the cluster surface of area S and depends on the temper-
ature T

M ' Sσ exp
(
−Ep−h
kBT

)
, (1)

where σ stands for the surface particle density, Ep−h is
the energy to excite a particle above the melted surface
(the “particle-hole pair” creation energy) and kB has the
usual meaning. The floating particles perform continuous
permutations (atomic scale jumps) among energetically
equivalent sites (vacancies) on the cluster surface with the
frequency

υ0 = υp−h exp
(
− E0

kBT

)
, (2)

where υp−h is the vibration frequency of the “particle-hole
pair” and E0 is the energy cost of the “on-site” jump. The
equivalent sites on the surface of this cluster are labelled
by i, i = 1,M .

According to numerical experiments [4,5], the float-
ing particles are rather free and easily dissociate from the
cluster surface. We suppose these particles can jump to
the nearest neighbor cluster, over the separation distance
ξ, where they may recombine with vacancies of the host
melted surface. The equivalent sites on the surface of the
second, nearby, cluster (of surface area S∗) are labelled by
k, k = 1,M∗ with M∗ given by

M∗ ' S∗σ exp
(
−Ep−h
kBT

)
. (3)

The “inter-site” transfer frequency is denoted by

υ ' υp−h exp
(
− Ed
kBT

)
, (4)

where Ed stands for the energy cost to dissociate the
“particle-hole pair”.

We now place one cluster at x and the other at x+ ξ
and apply to this mass-transfer process a kinetic approach
based on a system of master equations which describe both
permutations and escapes of itinerant particles [11]. Ac-
cordingly, the rate of change of the particle number at

every site “i” on the melted surface of the cluster placed
at x may be written as

∂

∂t
ni(x, t) = υ0

M∑
i6=j=1

nj(x, t)− υ0

M∑
i6=j=1

ni(x, t)

+υ
M∗′∑
k=1

nk(x+ ξ, t)− υ
M∗′∑
k=1

ni(x, t). (5)

After some simplifications, this becomes

∂

∂t
ni(x, t) = υ0

M∑
i6=j=1

[nj(x, t)− ni(x, t)]

+υ
M∗′∑
k=1

nk(x+ ξ, t)− υM∗′ni(x, t). (6)

The first term on the right hand side of the equation ac-
counts for the movement of the particles on the surface
of the cluster (the number of floaters is conserved by this
movement) while, the second term includes all transfer
possibilities of the particles to the second, nearby clus-
ter (naturally, this transfer changes the particle number
at each site i). Obviously, those sites on cluster surfaces
which do not face each other are excepted from the cal-
culus. Therefore, M∗′ counts the effective available sites
on the surface of the cluster placed at x + ξ which can
be reached by a direct jump, M∗′ = fM∗ where f is the
weight of the geometrical obstruction (roughly, f ' 1

2 ).
Itinerant particles, available for “inter-site” jumps, dis-
tribute themselves quickly over the whole surface area by
“on-site” jumps (with the frequency υ0, υ0 � υ). In this
way, all the “particle-hole pairs” get involved in the trans-
port process. Summing over all sites “i” in (6), we obtain

∂n

∂t
= υbn

∗ − υfn, (7)

which is the transport equation for the particle number
n(x, t) =

∑M′

i=1 ni(x, t) with n∗(x + ξ, t) =
∑M∗′

k=1 nk(x +
ξ, t). Here, υf and υb stand for the forward and backward
effective transition rates

υf '
1
2
M∗υ =

S∗σ

2
υp−he

− E
kBT

υb '
1
2
Mυ =

Sσ

2
υp−he

− E
kBT , (8)

where E = Ed + Ep−h. The same set of equations (5−7)
applies if the cluster is placed at x+ ξ; one gets straight-
forwardly the transport equation for the particle number
n∗(x+ ξ, t) =

∑M∗′

k=1 nk(x+ ξ, t) as

∂n∗

∂t
= υfn− υbn∗. (9)

By looking at equations (7−9) we may infer that the net
flow of itinerant particles occurs in the direction of the
large cluster where the solid angle of the particle jump
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Fig. 1. The growth of the surface area of a surface-melted
cluster by the inter-cluster direct transfer mechanism (a) in
comparison with the asymptotic regime of the Ostwald ripen-
ing process (b). The parameters employed in the present com-
putation are: υp−h = 2 × 103 s−1, E0 = 0.6 eV, E = 0.82 eV,
kT = 0.05 eV and σ = 1/4 Å−2.

is large. For example, we may consider that at the ini-
tial moment of time t = 0, the cluster placed at x + ξ is
larger by comparing with the other, S∗ > S, which means
that υf > υb. Consequently, the cluster placed at x + ξ
starts growing on the expense of the other which shrinks
in time. The corresponding variation in time of the cluster
surfaces S∗ and S have to be in direct proportion to the
instantaneous numbers of particle concentrations n and
n∗ given by kinetic equations (7−9) and should depend
on the rate of spreading over the cluster surface. This is
given by the transfer frequency υ0, subject of eq. (2). This
can be expressed by the following set of coupled differen-
tial equations

1
A

dS∗

dt
= n∗ (t) ;

1
A

dS

dt
= −n (t)

1
B

∂n∗

∂t
= nS∗ − n∗S;

1
B

∂n

∂t
= n∗S − nS∗, (10)

where the forward and backward transition rates υf,b in
above were replaced by (8) and use has been made of
eq. (2) which yields the constants A and B

A =
υp−h
σ

e
− E0
kBT ; B ' συp−h

2
e
− E
kBT . (11)

The evolution in time of cluster sizes depends on the de-
gree of melting of their surfaces via the corresponding en-
ergy cost E = Ep−h + Ed and via the characteristic (an-
harmonic) oscillation frequency υp−h. In Fig. 1, we display
the evolution in time of the surface area for the grow-
ing cluster, S∗ (t), following from the inter-cluster direct
transfer mechanism of particles with the growth law given
by eqs. (10) (the curve a). We may roughly approximate
the growth law goes linearly (S∗ ∼ t), which means the
increase of the average radius of the cluster obeys a power
law with the exponent equal to 1/2 [12].

The set of eqs. (10) is general and can be used to de-
scribe the effective mass transfer in any situation involving

pairs of clusters which are not necessarily surface-melted
but satisfy the appropriate proximity requirement (ξ ' l).
In the general case, E is simply the dissociation energy for
an atom at the cluster surface and υp−h becomes the sur-
face vibration frequency (υ).

The result obtained above refers to the mechanism
of direct transfer of particles between neighboring clus-
ters. In principle, the process can switch to an asymptotic
transport regime by increasing the separation distance be-
tween the two clusters. For widely separated clusters, the
latter case reverts to an ideal limit in which only one clus-
ter grows directly from solution. In this case, the cluster
growth obeys the well-known power law

R ∼ t1/3, (12)

for the average radius and is known as the Ostwald ripen-
ing process [6]. The growth of surface area goes as ∼ t2/3,
in this case. For comparison, we display in Fig. 1 the
growth law obeying the 2/3 power law (see the curve b).

The asymptotic regime occurs naturally in our model
by letting the separation distance ξ between clusters go
to infinity (ξ � l) which allows the itinerant particles to
proceed by a random walk. By looking above we can see
that this crossover between the direct particle transfer and
asymptotic regimes can be set up by transforming the
kinetic equation (7) into a diffusion-like equation. This
transformation requires υf = υb ≡ υ and a Taylor expan-
sion up to second order of the concentration functions.
The procedure allows us to obtain the diffusion coefficient(
D ∼ υl2

)
which is the constant associated with the dif-

fusion through the background matrix at large distances
from the shrinking cluster. The rate of growth is then
given by (12). Of course the transition to the asymptotic
regime proceeds gradually, being characterized by various
transient values of the time exponents in the range 1/2
through 1/3. Finally, we can note that the main factor of
delaying the attainment of the asymptotic regime is the
proximity relation between the two clusters involved in
the mass-transfer.

As one can see, the limiting regime
(
R ∼ t1/2

)
identi-

fied here in the cluster growth process, namely the inter-
cluster direct transfer of particles, has no relevant statis-
tical aspects: this is a particle transfer process between
two neighboring surface-melted clusters and is therefore
essentially a cluster-pair problem. The statistical size dis-
tribution of clusters may change both at its two ends,
where the smallest and largest clusters are, and in the
evolving increase in large clusters as the smaller clusters
disappear. These statistical aspects are significant, in the
sense that the distribution may change rapidly in the tran-
sient regimes between the two limits (R ∼ t1/2, R ∼ t1/3)
described above.
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